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UPPER EVALUATION OF POWER OF SURFACE
FORCES WITH DEFORMATION OF A MEDIUM
WITH A LIMITED INTENSITY OF TANGENTIAL
STRESSES

G. V. Ivanov UDC 539.3

We consider a medium in which the intensity of the tangential stresses cannot exceed a given value. In
other respects, the medium is arbitrary: The connection between the stresses and the deformations can be
arbitrary; specifically, the deformation can be accompanied by a breakdown of the continuity (fracture). With
the deformation of such a medium, the power of the forces at that part of the surface where the velocities
are given cah be evaluated from above [1]. In the present article a more general evaluation is proposed, based
on the use of the kinematically possible field of the velocity and a model of an inhomogeneous viscous in-
compressible liquid. If the viscosity coefficient is determined from the condition of a minimum of the evalua-
tion, it coincides with the known value [1]. The use of the proposed evaluation makes it possible to obtain
simple evaluations of the power of the surfaces and to calculate by successive approximations the minimal
evaluation in a given class of kinematically possible velocities.

§ 1. Upper Evaluation of Power of Surface Forces

Let a-{g be any stresses, in the region @, satisfying the equilibrium equations
oii+fi=0,i=1,2,3, (1.1
the inequality
01705 < 22, 0y — 03 — 8, 0%, ¥ = —%— 8 0%, (1.2)
and, in the part 8; of the boundary S of the region Q, the conditions
* iV =Py, i=1,2,3. (1.3)

In (1.1)-(1.3) and in what follows a Cartesian system of coordinates is used; fj, p; are given functions; T is a
constant; v are the components of an external unit normal to the surface S,

Let u"{ be the components of the vector of the velocity, given at Sy; S; =8 — 8, ; y; is some kinematically
possible field of the velocities, i.e., a field of the velocities satisfying the condition of incompressibility in £

Bitiny =0 ’ , (1.4)
and the condition at S
(ui — u;)"i =0. (1.5)

The velocities u; can have tangential discontinuities at some surfaces S k=1, 2, wv, m,
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.We denote
O = peyy, €5 = (i + w1y
where 1 is some positive function of the coordinates. From (1.2) we find
oij 0 < 72 —{—-%02,-92,—, |
and, consequently,
o <i Tz—[—-—i— 2¢..e (1.8)
Giifu S 5 W€i5845)- .

From (1.1)~(1.5) we find

(023 [oiwmids + [ pads+ {fude—+< 3 [1u,ds,
Q Su . 8y o] k=g, (1.1

( szv,-u;ds < smcgjv,-u,-dS + ‘g [u] dS,
Sy s,

Sy

where Iulk is the modulus of the tangential discontinuity of the velocities u; at §;; [u] is the modulus of the
difference in the tangential components of the velocities u;* and y; at §y.

From (1.8), (1.7), it follows that

[oimpias <& (#* + 5 weeues ) 42 +
8, Q-
w2 wnas+ [ was) — [ fude — | puds. (1.8)
=13, Sy ] Sy
The inequality (1.8) contains an arbitrary positive function p. If it is defined from the condition of a
minimum of the right-hand part of (1.8), then
po=2v/H, H? = 2, (1.9)

and inequality (1.8) goes over into the well-known evaluation [1] of the power of the external forces at S, for
a medium with a limited intensity of the tangential stresses (1.2).

Let the kinematically possible velocities be given as functions of the coordinates and the parameters
¢, k=1, 2, ..., N. We denote the right-hand part of (1.8) by G(u, ¢). To find the values of ¢ ‘for which,
Gl%p, ¢) is maximal, in the case (1.9) a system of equations nonlinear with'-respect to ¢ must be solved. A
solution of this system can be obtained by successive approximations. Obviously,
G (p'n";:) >I‘I:1an (”1 C:) =& (P-n+1a c‘l’:) =minG (pn—l—hick) =G (”‘n+h C;;H-i )’
3
where pnp, cﬁ, n=0, 1, ..., is the sequence of the approximate functions ¢ and the sought values of the param-
eters c,.. The system of equations of each of the approximations is linear with respect to those parameters
¢ on which the kinematically possible field of the velocities and the discontinuities of [uly, [u]depend linearly.

Using (1.8), it is simple to obtain calculated evaluations, assuming, for example, that u is a constant or
piecewise-constant function in .
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§2. Axial Compression of a Round Cylinder by Flat Slabs

Let a round cylinder with a diameter of 2 and a height of 2h (Fig. 1) be compressed by absolutely hard
slabs, so rough that the radial displacements of particles of the cylinder at the contact planes are equal to
zero,

Let the kinematically possible axial velocity w be a cubic polynomial in z, whose coefficients do not
depend on r; the kinematically possible radial velocify u is linear with respect to r. From the condition of
incompregsibility and the conditions

Wy = —Wy Wy = /2],y =0
we find
cw o= —Lwdl (1 — ), u = —(1/2)rdwl/dz,

euess = (1/2) [3(dwida)® + (1) (@widz2)), @.1)

where ¢ =z/h; ¢ is a parameter of the kinematically possible field of the velocities; w, is the velocity of the
motion of a slab. We calculate the upper evaluation of the force P of the compression of the ¢ylinder, assuming
that, in (1.8), in the whole volume of the cylinder, the function i is equal to exactly the same constant. From
(1.8}, (2.1), it follows that

Tp << Mg + (1/40)140 + (8 + 5A%)c*Ipy + M1 — 2¢)/37/3, (2.2)
where
p = Plna®y3; p, = pwl 3/t A = alh.
Minimizing the right-hand part of (2.2) with respect to ¢, and then with respect to p,, , we find
p << 11— 4002278 + BAn IR 4 /38
In the whole range of change in A, the evaluation found differs only slightly from the results of a calculation

of the minimal evaluation corresponding to the kinematic field under consideration [1].

§3. The Impression of a System of Flat, Smooth Punches

Let a system of absolutely hard punches with flat bases be pressed with the velocity v, into the flat sur-~
face of a medium in such a way that the deformation is plane; the deformation is symmetrical with respect to
the lines x =0, x =+ [ (Fig. 2).

As a kinematically possible field of the velocities in region 1 we take
u=EM1+cn — 12, v = @ — L + W2)enlvy (3.1
in region 2.
u=—(§—a; —a)lt +cn —12)/h, v =—1 — )[4 {121/, (3.2)

where & =z/h; v =ylh; oy =a,/h; 0y =2a,/h; A=a,/a,; ¢, h are the parameters of the field of the velocities; v, is the
velocity of the motion of the punches. We calculate the upper evaluation of the force P of the impression of a
punch, assuming that there is no friction at the contact surfaces; a;+ a,=1; the function p in (1.8) is equal to
a constant value of p; in region 1 and to a constant value of y, in region 2. From (1.8), (3.1), and (3.2) it
follows that

2p < Wpt + pi{t F e (4 4+ af)12] - tph - ppl 2 (1

- ad)2] + 5 [(al +ay) (1 + éc) + (1 + %;c)(i/al + 1/%)], (3.3)
HEN |
B A —1\
? |
f 4]
9 7 2
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where
p=Plhayt; pi=pwo/th; ps=pyby/Thi.
A solution of the nonlinear system of equations with respect to the values of u’f, y;‘, ¢, h, correspondingto
a minimum evaluation of (3 '3)’*03'2 be obtained by successive approximations. We limit ourselves to the first
approximation. Determining iy, 5, h from a minimum of the evaluation of (3.3) with ¢=0, we find
P2+ (1+M2VR, pi=pi=1, h=Vaga,

Determining ¢ from the condition of 2 minimum of the evaluation of (3.3) with the values found for I.LT, /f;, h
we obtain

p<11/6 + (1 + M2VE, ¢ = —2VAI(L +A). (3.4)

In the case of an ideal rigidly plastic medium, the problem under consideration with I = 0.5 has solutions
(Fig. 3) analogous to the solution of Hill and Prandtl for the impression of a single punch [1]. According to
these solutions

b= 1 + /2. (3'5)

The dashed line in Fig. 4 corresponds to an evaluation of (3.4) and the solid line to the value of p
according to (3.5). The difference between the evaluation and the value of p according to (3.5) with 0.5 =1 =2
does not exceed 12%. The considerable difference with larger values of A is explained by the fact that, in this
case, a continuous plastic zone ig not formed in the surface layer of the medium and, consequently, the
condition a;+ ay=1 corresponds poorly to the actual picture of the deformation. In this case, a better evalua-
tion can be obtained by assuming that, in the region a,+ a,< x =1, the velocities are equal to zero, and deter-
mining a, from the condition of a minimum of the evaluation.
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MEASUREMENT OF MULTIPOINT MOMENTS
OF COMPOSITE STRUCTURES

V. V. Dudukalenko, N. N, Lysach, UDC 539.2:531
~and S, I. Meshkov

Problems of thermal conductivity, elasticity, and the viscosity of multiphase solid materials have solu-
tions in the form of expansions with respect to multipoint moments. However, the use of these solutions is
limited by the difficulty in determination of the multipoint moments, giving the random field of the parameters,
which are the starting point for a theoretical investigation. Out of the existing quantitative methods of statis-
tical experiment [4, 5], the most promising is optical-structural analysis, based on the storage of a signal,
obtained from the output of a pickup of the optical density, with scanning of the structure. Subsequent auto-
mated introduction of the recording of the signal into an electronic computer would make it possible to use
any given algorithms for calculation of the parameters of the structure.

For justification of the experimental method of determining multipoint moments, let us consider the
statistically homogeneous random fields A in the space of the Cartesian coordinates Xj. The multipoint
moments are determined as a result of averaging

AXAXIAMX). . D>=MX — X, X" —Xye..) (1)
For a composite medium, the assignment of the random field of the determining parameters is repre-

sented in the form of independent characteristics, relating to the pliysical properties of each phase separately,
and the geometry of the distribution of the phases in space. Let A; be some physical parameter, corresponding
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